Geometry of varieties for graded maximal Cohen–Macaulay modules
نویسندگان
چکیده
We study a variety for graded maximal Cohen–Macaulay modules, which was introduced by Dao and Shipman. The main result of this paper asserts that there are only finite number isomorphism classes modules with fixed Hilbert series over algebras countable representation type.
منابع مشابه
Projective maximal submodules of extending regular modules
We show that a projective maximal submodule of afinitely generated, regular, extending module is a directsummand. Hence, every finitely generated, regular, extendingmodule with projective maximal submodules is semisimple. As aconsequence, we observe that every regular, hereditary, extendingmodule is semisimple. This generalizes and simplifies a result of Dung and Smith. As another consequen...
متن کاملGraded Specht Modules
Recently, the first two authors have defined a Z-grading on group algebras of symmetric groups and more generally on the cyclotomic Hecke algebras of type G(l, 1, d). In this paper we explain how to grade Specht modules over these algebras.
متن کاملGraded Rings and Modules
1 Definitions Definition 1. A graded ring is a ring S together with a set of subgroups Sd, d ≥ 0 such that S = ⊕ d≥0 Sd as an abelian group, and st ∈ Sd+e for all s ∈ Sd, t ∈ Se. One can prove that 1 ∈ S0 and if S is a domain then any unit of S also belongs to S0. A homogenous ideal of S is an ideal a with the property that for any f ∈ a we also have fd ∈ a for all d ≥ 0. A morphism of graded r...
متن کاملDifferential Graded Modules and Cosimplicial Modules
The ultimate purpose of this part is to explain the definition of models for the rational homotopy of spaces. In our constructions, we use the classical Sullivan model, defined in terms of unitary commutative cochain dg-algebras, and a cosimplicial version of this model, involving cosimplicial algebra structures. The purpose of this preliminary chapter is to provide a survey of constructions on...
متن کاملGraded Differential Geometry of Graded Matrix Algebras
We study the graded derivation-based noncommutative differential geometry of the Z2-graded algebra M(n|m) of complex (n+m)× (n+m)-matrices with the “usual block matrix grading” (for n 6= m). Beside the (infinite-dimensional) algebra of graded forms the graded Cartan calculus, graded symplectic structure, graded vector bundles, graded connections and curvature are introduced and investigated. In...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Manuscripta Mathematica
سال: 2021
ISSN: ['0025-2611', '1432-1785']
DOI: https://doi.org/10.1007/s00229-021-01282-x